Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction, and metal diffusion on galaxy formation

Su et al., available on arXiv.

Abstract: Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback in Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid turbulent metal diffusion. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological “zoom-in” simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modeled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being over-predicted by factors of ~10-100. Without feedback, neither galactic winds nor volume filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scale-heights with unphysically dense clumps congregating at the galactic center. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions, the additional physics investigated here (MHD, conduction, viscosity, metal diffusion) have only weak (~10%-level) effects on these properties and do not significantly alter the balance of phases, outflows, or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities, and feedback.

FIRE in the Field: Simulating the Threshold of Galaxy Formation

Fitts et al., available on arXiv.

Abstract: We present a suite of 15 cosmological zoom-in simulations of isolated dark matter halos, all with masses of Mh~10^10 Msun at z=0, in order to understand the relationship between halo assembly, galaxy formation, and feedback’s effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (FIRE) project and are performed at extremely high resolution. The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (Mstar/Msun~10^5-10^7). This non-negligible spread in stellar mass at z=0 in halos within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax. Much of this dependence of Mstar on a second parameter (beyond Mh) is a direct consequence of the Mh~10^10 Msun mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming halos remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Halos that form galaxies with Mstar>~2×10^6 Msun have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r_1/2. This apparent stellar mass threshold of Mstar~2×10^6~2×10^-4 Mh is broadly consistent with previous work and provides a testable prediction of FIRE feedback models in LCDM.

The Cosmic Baryon Cycle and Galaxy Mass Assembly in the FIRE Simulations

Anglés-Alcázar et al., available on arXiv.

Abstract: We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mh~10^10-10^13 Msun. By tracing cosmic inflows, galactic outflows, gas recycling, and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fueled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy’s evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously under-appreciated growth mode. By z=0, wind transfer, i.e. the exchange of gas between galaxies via winds, can dominate gas accretion onto ~L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete >50% of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of timescales, with median recycling times (~100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy’s stellar component.

When the Jeans don’t fit: How stellar feedback drives stellar kinematics and complicates dynamical modeling in low-mass galaxies

El-Badry et al., available on arXiv.

Abstract: In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments (FIRE) project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ~20% in dynamical mass estimates, even if full 3-dimensional stellar kinematics — including the orbital anisotropy — are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.

Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

Ma et al., available on arXiv.

Abstract: Recent spatially resolved observations of galaxies at z=0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments (FIRE) project, which include physically motivated models of the multi-phase ISM, star formation, and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z=0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disk, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disk, drive strong outflows, and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

Colors, Star formation Rates, and Environments of Star forming and Quiescent Galaxies at the Cosmic Noon

Feldmann et al., available on arXiv.

Abstract: We analyze the SFRs, stellar masses, galaxy colors, and dust extinctions of galaxies in massive (10^12.5-10^13.5 M_sun) halos at z~2 in high-resolution, cosmological zoom-in simulations as part of the Feedback in Realistic Environments (FIRE) project. The simulations do not model feedback from AGN but reproduce well the observed relations between stellar and halo mass and between stellar mass and SFR. About half of the simulated massive galaxies at z~2 have broad-band colors classifying them as `quiescent’, and the fraction of quiescent centrals is steeply decreasing towards higher redshift, in agreement with observations. However, our simulations do not reproduce the reddest of the quiescent galaxies observed at z~2. While simulated quiescent galaxies are less dusty than star forming galaxies, their broad band colors are often affected by moderate levels of interstellar dust. The star formation histories of the progenitors of z~2 star forming and quiescent galaxies are typically bursty, especially at early times. The progenitors of z~2 quiescent central galaxies are, on average, more massive, have lower specific SFRs, and reside in more massive halos than the progenitors of similarly massive star forming centrals. In our simulations, the suppression of SFR in moderately massive central galaxies at high z can be achieved – at least temporarily – by a combination of two distinct physical processes. Outflows powered by stellar feedback often result in a short-lived (<100 Myr), but almost complete, suppression of star formation activity after which many galaxies quickly recover and continue to form stars at normal rates. In addition, galaxies residing in slowly growing halos tend to experience a moderate reduction of their SFRs (`cosmological starvation'). The relative importance of these processes and AGN feedback is uncertain and will be explored in future work.

The Structure and Dynamical Evolution of the Stellar Disk of a Simulated Milky Way-Mass Galaxy

Ma et al., available on arXiv.

Abstract: We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were formed in a chaotic, bursty mode and have the largest vertical scale heights (1.5-2.5 kpc) by z=0, while stars younger than 6 Gyr were formed in a relatively calm, stable disk. The vertical scale height increases with stellar age at all radii, because (1) stars that formed earlier were thicker “at birth”, and (2) stars were kinematically heated to an even thicker distribution after formation. Stars of the same age are thicker in the outer disk than in the inner disk (flaring). These lead to positive vertical age gradients and negative radial age gradients. The radial metallicity gradient is neg- ative at the mid-plane, flattens at larger disk height |Z|, and turns positive above |Z|~1.5kpc. The vertical metallicity gradient is negative at all radii, but is steeper at smaller radii. These trends broadly agree with observations in the Milky Way and can be naturally understood from the age gradients. The vertical stellar density profile can be well-described by two components, with scale heights 200-500 pc and 1-1.5 kpc, respectively. The thick component is a mix of stars older than 4 Gyr which formed through a combination of several mechanisms. Our results also demonstrate that it is possible to form a thin disk in cosmological simulations even with strong stellar feedback.

Low-Redshift Lyman Limit Systems as Diagnostics of Cosmological Inflows and Outflows

Hafen et al., available on arXiv.

Abstract: We use cosmological hydrodynamic simulations with stellar feedback from the FIRE project to study the physical nature of Lyman limit systems (LLSs) at z<1. At these low redshifts, LLSs are closely associated with dense gas structures surrounding galaxies, such as galactic winds, dwarf satellites, and cool inflows from the intergalactic medium. Our analysis is based on 14 zoom-in simulations covering the halo mass range M_h~10^9-10^13 Msun at z=0, which we convolve with the dark matter halo mass function to produce cosmological statistics. We find that the majority of cosmologically-selected LLSs are associated with halos in the mass range 10^10 < M_h < 10^12 Msun. The incidence and HI column density distribution of simulated absorbers with columns 10^16.2 < N_HI < 2x10^20 cm^-2 are consistent with observations. High-velocity outflows (with radial velocity exceeding the halo circular velocity by a factor >~2) tend to have higher metallicities ([X/H] ~ -0.5) while very low metallicity ([X/H] < -2) LLSs are typically associated with gas infalling from the intergalactic medium. However, most LLSs occupy an intermediate region in metallicity-radial velocity space, for which there is no clear trend between metallicity and radial kinematics. Metal-enriched inflows arise in the FIRE simulations as a result of galactic winds that fall back onto galaxies at low redshift. The overall simulated LLS metallicity distribution has a mean (standard deviation) [X/H] = -0.9 (0.4) and does not show significant evidence for bimodality, in contrast to recent observational studies but consistent with LLSs arising from halos with a broad range of masses and metallicities.

Metal flows of the circumgalactic medium, and the metal budget in galactic halos

Muratov et al., available on arXiv.

Abstract: We present an analysis of the flow of metals through the circumgalactic medium in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L*. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that escape the galaxy and reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is greater than, but similar to the ISM metallicity. Many metals thus reside in a reservoir in the CGM. We find that the outflowing flux through Rvir is lower than that at 0.25Rvir by a factor of ~2-5. Cooling and recycling from this reservoir determine the metal budget in the ISM. The inflow metallicity at Rvir is generally very low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, which become increasingly dominated by metal-poor gas, while the galaxies themselves preferentially retains metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z=0. We measure the fraction of metals in CGM, ISM, stars, and roughly quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the COS halos survey, while for the other two it appears to be lower.

Latte Reconciles Dwarf Galaxies with LCDM

Wetzel et al. report on a new study using a high-resolution simulation of a Milky Way-mass dark matter halo to study the effects of baryonic physics and stellar feedback on dwarf satellites. In this paper, we show that baryonic physics alone can solve the missing satellites and “too big to fail” problems, which have previously been claimed as failures of the Lambda-CDM cosmology.

In this paper, Wetzel et al. also introduce the Latte project, as part of which we are pushing the resolution frontier by running ultra-high resolution simulations of Milky Way-mass halos. We are aiming to run a simulation with the full FIRE physics with one billion resolution elements in the next year. Stay tuned!

1 15 16 17 18 19