Barry et al., available on arXiv
Abstract: A variety of observational campaigns seek to test dark-matter models by measuring dark-matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within LambdaCDM, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to 10^6 Msun, distances < 50 kpc of the galactic center, across z = 0 - 1 (lookback time 0 - 8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytic models. A typical MW-mass halo contains ~16 subhaloes >10^7 Msun (~1 subhalo >10^8 Msun) within 50 kpc at z = 0. We compare our results with dark-matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2-10x, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ~10x higher at z = 1 than at z = 0. Subhaloes have nearly isotropic orbital velocity distributions at z = 0. Across our simulations, we also identified 4 analogs of Large Magellanic Cloud satellite passages; these analogs enhance subhalo counts by 1.4-2.7 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ~5 per Gyr for a stream like GD-1, sufficient to make subhalo-stream interactions a promising method of measuring dark subhaloes.