Measuring dynamical masses from gas kinematics in simulated high-redshift galaxies
Wellons et al., available on arXiv
Abstract: Advances in instrumentation have recently extended detailed measurements of gas kinematics to large samples of high-redshift galaxies. Relative to most nearby, thin disk galaxies, in which gas rotation accurately traces the gravitational potential, the interstellar medium (ISM) of z>1 galaxies is typically more dynamic and exhibits elevated turbulence. If not properly modeled, these effects can strongly bias dynamical mass measurements. We use high-resolution FIRE-2 cosmological zoom-in simulations to analyze the physical effects that must be considered to correctly infer dynamical masses from gas kinematics. Our analysis covers a wide range of galaxy properties, from low-redshift Milky-Way-mass galaxies to massive high-redshift galaxies (M_* > 10^11 M_sun at z=1). Selecting only snapshots where a well-ordered disk is present, we calculate the rotational profile